269 research outputs found

    0-level Vacuum Packaging RT Process for MEMS Resonators

    Get PDF
    A new Room Temperature (RT) 0-level vacuum package is demonstrated in this work, using amorphous silicon (aSi) as sacrificial layer and SiO2 as structural layer. The process is compatible with most of MEMS resonators and Resonant Suspended-Gate MOSFET [1] fabrication processes. This paper presents a study on the influence of releasing hole dimensions on the releasing time and hole clogging. It discusses mass production compatibility in terms of packaging stress during back-end plastic injection process. The packaging is done at room temperature making it fully compatible with IC-processed wafers and avoiding any subsequent degradation of the active devices.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/EDA-Publishing

    Ethnobiology : the missing link in ecology and evolution

    Get PDF
    Evolutionary biologists and ecologists increasingly appreciate the value of local knowledge of human communities for research into the past, present, and future of biodiversity. However, there are often significant problems accessing and interpreting this knowledge. Here, we argue that closer interaction with ethnobiologists, who study the relation between humans and the natural world, will enable local knowledge to be better applied in ecological and evolutionary biological research. This will provide more comprehensive answers to the scientific questions being asked, and will result in improved engagement with both academic and non-academic communities

    High quality factor copper inductors integrated in deep dry-etched quartz substrates

    Get PDF
    This paper reports on an inductor fabrication method capable to deliver high quality factor (Q) and high self-resonance frequency (SRF) devices using quartz insulating substrates and thick high-conductivity copper lines. Inductors are key devices in RF circuits that, when fabricated on traditional semiconductor substrates, suffer from poor RF performances due to thin metallization and substrate related losses. Many previous works revealed that RF performances are strongly dependent on the limited metallization thickness and on the conductivity of the substrate. In this paper we demonstrate a new fabrication process to improve the Q factor of spiral inductors by patterning thick high conductive metal layers directly in a dielectric substrate. Moreover, we develop and validate accurate equivalent circuit modeling and parameter extraction for the characterization of the fabricated device

    High quality factor copper inductors integrated in deep dry-etched quartz substrates

    Get PDF
    This paper reports on an inductor fabrication method capable to deliver high quality factor (Q) and high self-resonance frequency (SRF) devices using quartz insulating substrates and thick high-conductivity copper lines. Inductors are key devices in RF circuits that, when fabricated on traditional semiconductor substrates, suffer from poor RF performances due to thin metallization and substrate related losses. Many previous works revealed that RF performances are strongly dependent on the limited metallization thickness and on the conductivity of the substrate. In this paper we demonstrate a new fabrication process to improve the Q factor of spiral inductors by patterning thick high conductive metal layers directly in a dielectric substrate. Moreover, we develop and validate accurate equivalent circuit modeling and parameter extraction for the characterization of the fabricated device

    Single-block rockfall dynamics inferred from seismic signal analysis

    Get PDF
    International audienceSeismic monitoring of mass movements can significantly help to mitigate the associated hazards; however, the link between event dynamics and the seismic signals generated is not completely understood. To better understand these relationships, we conducted controlled releases of single blocks within a soft-rock (black marls) gully of the Rioux-Bourdoux torrent (French Alps). A total of 28 blocks, with masses ranging from 76 to 472 kg, were used for the experiment. An instrumentation combining video cameras and seismometers was deployed along the travelled path. The video cameras allow reconstructing the trajectories of the blocks and estimating their velocities at the time of the different impacts with the slope. These data are compared to the recorded seismic signals. As the distance between the falling block and the seismic sensors at the time of each impact is known, we were able to determine the associated seismic signal amplitude corrected for propagation and attenuation effects. We compared the velocity, the potential energy lost, the kinetic energy and the momentum of the block at each impact to the true amplitude and the radiated seismic energy. Our results suggest that the amplitude of the seismic signal is correlated to the momentum of the block at the impact. We also found relationships between the potential energy lost, the kinetic energy and the seismic energy radiated by the impacts. Thanks to these relationships, we were able to retrieve the mass and the velocity before impact of each block directly from the seismic signal. Despite high uncertainties, the values found are close to the true values of the masses and the velocities of the blocks. These relationships allow for gaining a better understanding of the physical processes that control the source of high-frequency seismic signals generated by rockfalls

    Characterization of rockfalls from seismic signal: insights from laboratory experiments

    Get PDF
    International audienceThe seismic signals generated by rockfalls can provide information on their dynamics and location. However, the lack of field observations makes it difficult to establish clear relationships between the characteristics of the signal and the source. In this study, scaling laws are derived from analytical impact models to relate the mass and the speed of an individual impactor to the radiated elastic energy and the frequency content of the emitted seismic signal. It appears that the radiated elastic energy and frequencies decrease when the impact is viscoelastic or elasto-plastic compared to the case of an elastic impact. The scaling laws are validated with laboratory experiments of impacts of beads and gravels on smooth thin plates and rough thick blocks. Regardless of the involved materials, the masses and speeds of the impactors are retrieved from seismic measurements within afactor of 3. A quantitative energy budget of the impacts is established. On smooth thin plates, the lost energy is either radiated in elastic waves or dissipated in viscoelasticity when the impactor is large or small with respect to the plate thickness, respectively. In contrast, on rough thick blocks, theelastic energy radiation represents less than 5% of the lost energy. Most of the energy is lost in plastic deformation or rotation modes of the bead owingto surface roughness. Finally, we estimate the elastic energy radiated during field scale rockfalls experiments. This energy is shown to be proportional to the boulder mass, in agreement with the theoretical scaling laws

    Manufacture of micro-electro-mechanical-system using sacrificial layer made of silicon, useful for micro-electro-mechanical-system device architecture, e.g. radio-frequency capacitive switch and current switch

    Get PDF
    NOVELTY - A micro-electro-mechanical-system (MEMS) is manufactured by the use of a sacrificial layer that is made of silicon. USE - The invention is used in surface micromachining for the manufacture of a MEMS containing a suspended metal layer or MEMS device architecture. MEMS device is a suspended gate metal oxide semiconductor field effect transistor (SG-MOSFET). It is used as radio-frequency capacitive switch, current switch, radio-frequency tuneable capacitor, magnetic field sensor, accelerometer, and pressure sensor. (all claimed
    • 

    corecore